CS106B Calendar

Below is the tentative syllabus for this quarter's offering of CS106B. The specific content ordering may change based on how quickly we're able to move through the relevant topics. The assigned readings may be done before or after each lecture, though we recommend doing the readings before class.

Date	Topics	Readings	Assignments			
Part One: Welcome to C++!						
Monday, January 6	Why continue onward in programming? Course Overview The C++ Programming Language	Chapter 1	Assignment 0 Out			
Wednesday, January 8	How do we harness self-similarity? Functions in C++ Recursive Functions	Chapter 2 Chapter 7				
Friday, January 10	How can we process text recursively? Strings and Streams Recursion over Strings	Chapter 3 Chapter 4.1 – 4.3	Assignment 0 Due Assignment 1 Out			
Part Two: Fundamental Data Types						
Monday, January 13	How do we store aggregate data? Vector and Grid Branching Recursion	Chapter 5.1				
Wednesday, January 15	How do we model and explore sequences? Stack and Queue	Chapter 5.2 – 5.3				
Friday, January 17	How do we work with associative data? HashMap, HashSet, and Lexicon	Chapter 5.4 – 5.5	Assignment 1 Due Assignment 2 Out			
Monday, January 20	Dr. Martin Luther King, Jr. Day National Holiday No Class					
Part Three: Recursive Problem-Solving						
Wednesday, January 22	How do we model self-similar structures? Graphical Recursion Recursive Problem-Solving	Chapter 8.1 Chapter 8.4				
Friday, January 24	How do we find all solutions to a problem? Enumerating Subsets	Chapter 8.2 – 8.3	Assignment 2 Due Assignment 3 Out			
Monday, January 27	How do we choose the best team for the job? Enumerating Permutations Enumerating Combinations					
Wednesday, January 29	How can we optimally allocate resources? Recursive Backtracking I	Chapter 9.1 – 9.2				
Friday, January 31	How do we find a needle in a haystack? Recursive Backtracking II		Assignment 3 Due Assignment 4 Out			

Date	Topics	Readings	Assignments			
Part Four: Algorithmic Efficiency						
Monday, February 3	Why are some algorithms faster than others? Algorithmic Efficiency Big-O Notation	Chapter 10.1 – 10.2				
Wednesday, February 5	How do we arrange elements into sorted order? Searching and Sorting, Part I	Chapter 10.3 – 10.5				
Friday, February 7	How does efficiency guide problem-solving? Searching and Sorting, Part II		Assignment 4 Due Assignment 5 Out			
	Part Five: Abstraction and Dynam	ic Arrays				
Monday, February 10	How do we define our own collection classes? Designing Abstractions	Chapter 6				
Tuesday, February 11	<i>Midterm Exam</i> 7PM – 10PM, Location TBA Covers Topics from Assignment 0 – Assignment 3					
Wednesday, February 12	How do single variables hold multiple values? Dynamic Allocation Implementing Stack	Chapter 11 Chapter 12.1				
Friday, February 14	How does data representation impact efficiency? Optimizing the Stack					
Monday, February 17	Presidents' Day National Holiday No Class					
Wednesday, February 19	How can we harness hard-to-predict functions? Hash Functions Linear Probing, Part I	Chapter 15				
Friday, February 21	What else is possible in hashing? Linear Probing, Part I Hashing Strategies		Assignment 5 Due Assignment 6 Out			
Part Six: Linked Lists						
Monday, February 24	How do we form sequences from individual elements? Linked Lists, Part I	Chapter 12				
Wednesday, February 26	What tradeoffs exist in data representation? Linked Lists, Part II	Chapter 13				
Friday, February 28	How do we transfer data between groups? Linked Lists, Part III		Assignment 6 Due Assignment 7 Out			
Part Seven: Binary Trees						
Monday, March 2	How can we efficiently store data in sorted order? Binary Search Trees, Part I	Chapter 16.1 – 16.2				
Wednesday, March 4	How can we efficiently search data in sorted order? Binary Search Trees, Part II	Chapter 16.3 – 16.4				

Date	Topics	Readings	Assignments		
Friday, March 6	How are trees useful outside of data structures? Huffman Encoding		Assignment 7 Due Assignment 8 Out		
Part Eight: Looking Forward					
Monday, March 9	How do we model and represent networks? Graphs Graph Searches	Chapter 18			
Wednesday, March 11	How do we make sense of complex data? Clustering Algorithms Kruskal's Algorithm				
Friday, March 13	What comes after CS106? Where to Go from Here		Assignment 8 Due No Late Submissions		
Monday, March 16	<i>Final Exam</i> 8:30AM – 11:30AM, Location TBA Cumulative; Covers All Topics				